
A New Statistical Software Reliability Tool

M.A.A. Boon1, E. Brandt2, I. Corro Ramos1, A. Di Bucchianico1 and R. Henzen2

1 Department of Mathematics, Eindhoven University of Technology, Eindhoven, The Netherlands
2 Refis System Reliability Engineering, Bilthoven, The Netherlands

Abstract

We describe a new statistical tool for software reliability analyses that we are developing.
Existing packages for statistical analysis of software reliability data do not make full use of
state-of-the-art statistical methodology or do not conform to best practices in statistics.
Our tool has a Java based interface and uses the statistical programming language R
(see www.r-project.org) for the statistical computations. R is open-source free software
maintained by a group of top-level statisticians and is rapidly becoming the standard
programming language within the statistical community. The tool has a user-friendly
interface which includes features like auto detection of data type and a model selection
wizard.

Keywords: software reliability, software testing, statistical models, R.

1 Introduction

Successful testing processes require excellence in both software testing and management. In
order to support well-founded decisions on issues like resource allocation and software release
moments, quantitative procedures are indispensable. Since few testing processes have a de-
terministic course, statistics is very often an appropriate part of such quantitative procedures.
Existing tools for software reliability analysis like Casre and Smerfs3 do not make full use
of state-of-the-art statistical methodology or do not conform to best practices in statistics.
Thus, these tools cannot fully support sound software reliability analyses. We decided to
build a new tool that

• uses well-documented state-of-the-art algorithms

• is platform independent

• encourages to apply best practices from statistics

• can easily be extended to incorporate new models.

In order to meet these requirements we decided to use Java for the interface and the statistical
programming language R (see www.r-project.org) for the statistical computations. R is open-
source free software maintained by a group of top-level statisticians and is rapidly becoming
the standard programming language within the statistical community. In this paper we
report on the status of our tool. Our tool is a joint project of the Laboratory for Quality
Software (LaQuSo) of the Eindhoven University of Technology (www.laquso.com) and Refis

1



(www.refis.nl). The tool development is financially supported by a grant of the Dutch
Innovation Platform.

The rest of the paper is organized as follows. In Section 2 general guidelines of software
reliability analysis are given. In Section 3 we present general and statistical features of the
tool. We focus on describing the tool’s GUI thoroughly. A study to show how the tool works
in practice is presented in Section 4. Finally, in Section 5 we summarize the work carried out
and we point out to several important short-term objectives.

2 A note on reliability analysis

For general information on software reliability analysis we refer to Lyu (1996), Musa (2006)
and Pham (2006). Like there exist coding standards for writing software, there also exist
standards for performing statistical analyses. Basic steps in a statistical analysis of software
reliability data should include (cf. Goel (1985))

1. data collection (which data is relevant for the analysis)

2. trend tests (does the data indicate growth, otherwise analysis is useless)

3. model selection (pre-selection of models)

4. model estimation (calculate optimal parameters from data)

5. model validation (do models fit to data)

6. model interpretation (calculate quantities of interest from model parameters).

We talk of ungrouped or exact data when the failures are reported individually and the
data represents time between failures. However, it is possible to report faults in periods of
time, in which case the data consists of the time intervals where the failures are reported and
the number or faults found in each interval. In this case we talk of grouped or interval data.
Unfortunately, ungrouped data has received much more attention in the literature.

Before trying to fit any reliability growth model we should verify whether the data indi-
cates reliability growth. This can be done using adequate plots or more formally with trend
tests. Figure 1 clearly depicts the idea that software becomes more reliable as long as it is
tested and errors have been repaired, so that more effort is required to find future errors.

There are over 200 software reliability models based on different assumptions, assumptions
which are often unclear or too unrealistic. Systematic approaches to use model assumptions
and data requirements for initial model selection have not received much attention in the
literature, Kharchenko et al. (2002) being an exception. Therefore, we have been developing
a matrix-based procedure to support the choice of the models to work with. A simple version
of this matrix can be found in Figure 2. Since we wish to select rather than rule out applicable
models, we state all assumptions as negations of restrictions. To select models, one first has
to select relevant assumptions and weights to incorporate the available information on the
testing project at hand. If all requirements and selected assumptions of a model are satisfied,
then the score for this model is 100%. In all other cases the score of the model is defined
using the relative importance (weight) of the applicable characteristics of the model.

Estimation of model parameters requires optimization. Since the parameters typically are
of different order of magnitude, numerical problems like non-convergence or large flat areas

2



Figure 1: Reliability growth data.

around the maximum cause practical problems (see Yin and Trivedi (1999)). In our tool we
pay attention to convergence issues and apply algorithms that avoid the standard numerical
problems.

After parameter estimation has been completed, model verification must be determined.
Graphical methods like the u-plot or TTT (Total Time on Test) plots (see Rigdon and Basu
(2000) for details) or goodness-of-fit tests can be applied. Unluckily we find also problems here
(derived to the fact that the assumptions of independent and identically distributed observa-
tions are normally broken by software reliability models). Therefore, standard goodness-of-fit
tests, like the Kolmogorov test, cannot be used although this is often done. For diverse sub-
classes of models new goodness-of-fit tests are becoming available (see Bhattacharjee et al.
(2004), Zhao and Wang (2005)).

Finally, model interpretation makes possible to determine quantities like number of re-
maining errors and reliability of the system.

3 Software reliability tool

In this section we give a general overview of the GUI of our tool. Our tool is written in Java
and we have made use of readily available components from Java Resource Bundles. The
statistical computations are performed by calling R (high-quality free open-source statistical
software). The communication of Java with R uses JRI and JavaGD libraries developed by
RoSuDa, the Computational Statistics group of the University of Augsburg. Initially, the
GUI of our tool consists of four menu items as we can see in Figure 3. The multiple options

3



Figure 2: Assumption matrix.

of all the menus are explained during this section. In the beginning only the Data and Help
menus are enabled. To have access to the working environment we have to select the option
Import from the Data menu. We can distinguish two new windows that will remain visible
all the time, one devoted to data and the other one to graphics. Figure 4 shows the data
window. Three different tabs can be identified. The first one contains the imported data, the
second one is allocated to the filtered data (in case we use this option) and the third one will
show the data from the model analysis. Figure 1 shows the Graphical Output window where
all the plots produced will be displayed. In the rest of this section we explain the tool menu
options in detail, paying special attention to the Models and Analysis menus.

3.1 Data menu

1. Import

Imports data files in .txt and .xls formats. After loading the data set the working
environment is displayed.

2. Export

Exports data files in .txt and .xls formats.

3. Filter Data

This dialog (see Figure 5) allows to refine the data set and keep a subset of observations.
The filtered data set can also be exported and imported.

4



Figure 3: Software reliability tool GUI.

Figure 4: Data window.

4. Transform Variable

With this option we can create new variables applying basic operations to the variables
of the data set. The available operations can be observed in Figure 6.

5. Preferences

User preferences can be set using this option. Font type and size can be chosen for
both program GUI and output (see Figure 7). The number of significant digits for the
calculations can be selected from one up to eight (by default set to three). We can also

5



Figure 5: Filter Data dialog.

Figure 6: Transform Variable dialog.

decide the colours to be used in the plots. These options can be saved (or load) to
(from) a .txt file.

6. Exit

Closes the GUI and terminates the program execution.

3.2 Graphics menu

1. Create Scatter Plot

With this option we can generate plots that will be loaded in the Graphical Output
window. After clicking on this item, a window named Select Plot Variables pops-up
(see Figure 8). We can select the variables we want to plot and assign them to the
X or Y axes. Moreover, we can choose the type of plot we wish to generate. The
existing options are scatter plot, normal probability plot and TTT plot. Finally, the
Draw Graph button will create the graph. On the lower part of the window we can set

6



Figure 7: Preferences window.

Figure 8: Select Plot Variables window.

display options of the plot like the main title, the labels of the axes or the format of the
curves.

2. Copy Current Plot to Clipboard

Copy the plot that is displayed on the Graphical Output window to the clipboard. Thus,
the plot is cached and can be transferred between documents or applications, via copy
and paste operations.

3. Export Current Plot

Selecting this option a save dialog appears to export the current plot to a graphic file.
The formats supported are .eps, .jpg and .png.

7



4. Print Current Plot

With this option a print dialog is displayed to print the current plot.

3.3 Analysis menu

1. Model Select Wizard

Figure 9 shows the Model Select Wizard. In this dialog a list of common software reli-
ability assumptions are enumerated. These assumptions are known from the literature
and they are used in different software reliability models. The most relevant models
are listed on the right-hand side of the dialog follow by a column called Score. Every
assumption has a score associated to every model. After selecting the assumptions, the
models receive points and they are sorted by relevance. The higher score a model has,
the better the model will fit the assumptions.

Figure 9: Model Select Wizard dialog.

2. Data Type

With the Select Data Type window (see Figure 10) we have the option to set the type
of data of our data set. Time between failures or cumulative times, exact or interval
data are the available options. In case of interval data we have to distinguish between
counts per interval or cumulative counts. Options like different kind of errors (severity)
or whether the last element of the data set is an observer error are also offered. In case
we do not know which kind of data we have, the option Try to Autodetect Data Type
results of special interest. With this button the program estimates the type of data of
our data file. Checking the number of columns (grouped or ungrouped) or the growth
of the data (time between failures or cumulative times) we may find out what kind of
data we are using.

3. Trend Tests

The tool has the Laplace and the MIL-HDBK 189 trend tests already implemented and
new tests will be added soon. The Trend Tests window is shown in Figure 11. Select

8



Figure 10: Select Data Type dialog.

Figure 11: Trend Tests window.

the variable whose growth we want to investigate as well as the tests we would like to
use. The significance at which the test will be performed can also be selected here. On
the right-hand side of the window we can observe the result of the tests we decided to
perform. Graphical interpretation of the test is also displayed on the Graphical Output
window.

4. Analyse Model

The analysis window is shown in Figure 12. Before performing the analysis four steps
must be follow. First, select the model(s) to fit the data. Then set the confidence
level used to calculate confidence intervals (by default set to 95%) and the significance
level to perform hypothesis testing (by default set to 1%). Last, choose between the
maximum-likelihood or least squares methods for parameter estimation. To perform

9



Figure 12: Analysis output.

the analysis click the Analyse Model button. Subsequently, the analysis output shows
the type of data, the model choices, the parameter estimates and the result of the
Kolmogorov goodness-of-fit test. The data window (see Figure 13) presents the fitted
values for the selected models. Finally, the graphical output (see Figure 14) shows the

Figure 13: Fitted values data.

observed values and the estimated models (by default represented by circles and a solid

10



curve, respectively).

Figure 14: Fitted model plot.

5. Plot Fitted Models

This option is enabled only after the analysis has been done and allows us to plot the
observed values and the estimated models that we selected for the analysis.

6. Export Output to Excel

This option is also enabled only after the analysis has been performed and give us the
possibility to export the output of the analysis to .xls format.

3.4 Help menu

1. Tool Help

Help files of the tool.

2. SRE Help

Glossary of terms and background on chosen algorithms.

3. About. . .

Information about the developers, version of the tool, etc. . .

11



4 Case study

In this section we show a demonstration of the tool using a data set by Joe (1989). The
data set, reproduced in Table 1, consists of 207 observations corresponding to times between
failures (ungrouped data). To load the data set in our tool click the Data menu and then on

Joe I data set
39 10 4 36 4 5 4 91 49 1 25 1 4 30
42 9 49 44 32 3 78 1 30 205 5 129 103 224
186 53 14 9 2 10 1 34 170 129 4 4 35 5
5 22 36 35 121 23 33 48 32 21 4 23 9 13

165 14 22 41 12 138 95 49 62 2 35 89 99 69
22 15 19 42 14 11 41 210 16 30 37 66 9 16
14 24 12 159 89 118 29 21 18 2 114 37 46 17
1 150 382 160 66 206 9 26 62 239 13 4 85 85

240 178 34 102 9 146 59 48 25 25 111 5 31 51
6 193 27 25 96 26 30 30 17 320 78 39 13 13
19 128 34 84 40 177 349 274 82 58 31 114 39 88
84 232 108 38 86 7 22 80 239 3 39 63 152 63
80 245 196 46 152 102 9 228 220 208 78 3 83 6
212 91 3 10 172 21 173 371 40 48 126 90 149 30
317 500 673 432 66 168 66 66 128 49 332

Table 1: Time between failures.

Import. An open dialog pops up (see Figure 15). We look for the data file that contains our
data set (Joe I.xls) and then we click the Open button. We can distinguish three different
windows in the GUI as we mentioned in the beginning of Section 3. On the left-hand side we
can observe the data file while the graphical output window appears on the right-hand side.
The middle of the screen is occupied by the Select Data Type dialog, already presented in
Section 3.3 as part of the Data Type menu (see Figure 10). With this dialog we decide the
kind of data we have. Therefore, select Time between errors and Ungrouped options. Note
that in case of doubt we can try the option Try to Autodetect Data Type. The next step is to
check whether the data presents any trend. Select the option Trend Tests from the Analysis
menu and the Trend Tests window will be displayed (see Section 3.3, Trend Tests). Select the
variable Cumulative Times follow by the trend tests we want to perform, in this case both
Laplace and MIL-HDBK 189. Set the statistical significance level (Alpha) for the analysis and
then click on Perform Test. The result of the tests is shown in Figure 11. On the Test Results
area we can observe that both tests support the fact that there exists significant growth
in reliability. In addition, the graphical output displays a graphical interpretation of the
(statistical) test (in this case MIL-HDBK 189 test) as we can appreciate in Figure 16. Since
the result of the trend test is positive, i.e., the data shows reliability growth, the next step is to
perform analysis of the data applying software reliability models. An initial model inspection
can be done with the option Model Select Wizard from the Analysis menu, as we described in
Section 3.3 (see Figure 9). Choose the most appropriate assumptions to our case and select
the model (or models) with the highest score. In this case, Goel-Okumoto seems to be a
suitable model for our assumptions, as we can appreciate in Figure 17. Select Analyse Model

12



Figure 15: Browsing the data file.

Figure 16: MIL-HDBK 189 trend test graphical interpretation.

from the Analysis menu and the analysis output window (see Figure 12) will be displayed.
Select the Goel-Okumoto model and set the confidence level that will be used to calculate
confidence intervals and the significance level to perform hypothesis testing. Choose between
maximum likelihood or least squares parameter estimation methods and click on Analyse
Model. The result of the analysis is shown in Figure 18. The data window presents the fitted
values for the Goel-Okumoto model. The graphical output shows the observed values (circles)

13



Figure 17: After selecting our assumptions, the Goel-Okumoto model gets the highest score.

Figure 18: Model analysis.

and the estimated model (curve). A first inspection of this plot suggests that Goel-Okumoto
is a reasonable model for our data. Formal result of the analysis (parameter estimates and
goodness-of-fit test) is displayed on the analysis output window. As a consequence of our
analysis we can conclude that there is no evidence to reject the fact that our data can be
described using the Goel-Okumoto model.

14



5 Conclusions and future work

We have developed a new tool for statistical software reliability analyses. The interface is
programmed in Java and therefore, it is platform independent. Our tool uses well-documented
state-of-the-art statistical algorithms programmed in R and encourages to apply best practices
from statistics. Furthermore, it has a user-friendly interface which includes features like model
selection wizard and auto detection of data type. The extension of the tool incorporating new
models and features is an ongoing challenge that stimulates us to continue working on this
direction.

References

M. Bhattacharjee, J. V. Deshpande, and U. V. Naik-Nimbalkar. Unconditional tests of good-
ness of fit for the intensity of time-truncated nonhomogeneous Poisson processes. Techno-
metrics, 46(3):330–338, 2004.

A.L. Goel. Software reliability models: Assumptions, limitations, and applicability. IEEE
Trans. Soft. Eng., 11(12):1411–1423, 1985.

H. Joe. Statistical inference for General-Order-Statistics and Nonhomogeneous-Poisson-
Process software reliability models. IEEE Trans. Software Eng., 15(11):1485–1490, 1989.

V.S. Kharchenko, O.M. Tarasyuk, V.V. Sklyar, and V.Yu. Dubnitsky. The method of software
reliability growth models choice using assumptions matrix. In COMPSAC ’02: Proceedings
of the 26th International Computer Software and Applications Conference on Prolonging
Software Life: Development and Redevelopment, pages 541–546, Washington, DC, USA,
2002. IEEE Computer Society.

M.R. Lyu, editor. Handbook of Software Reliability Engineering. McGraw-Hill and IEEE
Computer Society, New York, 1996.

J.D. Musa. Software Reliability Engineering: More Reliable Software Faster and Cheaper.
Author House, Bloomington, USA, 2nd edition, 2006.

H. Pham. System Software Reliability. Springer Series in Reliability Engineering. Springer,
London, 2006.

S.E. Rigdon and A.P. Basu. Statistical Methods for the Reliability of Repairable Systems.
Wiley, 2000.

L. Yin and K.S. Trivedi. Confidence interval estimation of NHPP-based software reliability
models. In Proc. 10th Int. Symp. Software Reliability Engineering (ISSRE 1999), pages
6–11, 1999.

J. Zhao and J. Wang. A new goodness-of-fit test based on the Laplace statistic for a large
class of NHPP models. Comm. Statist. Simulation Comput., 34(3):725–736, 2005.

15


